¿Sabemos lo que quiere el pueblo?


La irrupción de los nuevos partidos ha atraído una renovada atención por los sistemas de votaciones. En esta entrada voy a recordar un ejemplo que se deberíamos estudiar todos desde pequeñitos, antes de que nos dejen votar. Es muy sencillo e ilustra cómo no existe “lo que quiere el pueblo”, la antesala al concepto de que no existe un sistema de votación (o de agregación de preferencias) que tenga todas las propiedades que nos gustaría (ver aquí).

Pongamos que hay una sociedad con 100 personas divididas en seis partidos (PT, PU, PV, PX, PY y PZ). Deben elegir entre cinco propuestas distintas, pero cada grupo las ordena de mejor a peor según se indica en la tabla.

Partido (# personas)
PT (33)
PU (16)
PV (3)
PX (8)
PY (18)
PZ (22)

---------
---------
--------
--------
---------
---------
Ránking
A
B
C
C
D
E
B
D
D
E
E
C
C
C
B
B
C
B
D
E
A
D
B
D
E
A
E
A
A
A

Por ejemplo, las 100 personas pueden ser parlamentarios, los grupos, partidos políticos y las propuestas, candidatos a la presidencia.

Cuál es el candidato que debe ser elegido? Es pregunta trampa, no hay tal cosa como “el que debe ser elegido” (enunciado normativo) sin hacer referencia a una norma, y la norma puede ser una entre muchas, sin que ninguna de ellas sea claramente la más justa y mejor. Tomemos cinco posibles normas (sistemas de votación) y veamos quién gana si las personas votan sinceramente:

Regla de la pluralidad (mayoría relativa): Cada uno vota la propuesta preferida y la que más votos obtenga es la que sale elegida.

Gana A con 33 votos frente a los 16 de B, los 11 de C, los 18 de D y los 22 de E.

Recuento de Borda: Cada votante asigna cuatro puntos a su propuesta preferida y luego tres, dos, uno y cero a cada una de las siguientes según decrezcan sus preferencias. Gana la que más puntos tenga.

Gana B, que suma 33x1 + 16x4 + (3+8+22)x2 + 18x1 = 171 puntos, más que cualquier otro (p.e., A suma 33x4 + 3x1 = 136).

Método de Condorcet: Gana aquella propuesta que vence a cada una de las demás por separado. (No siempre hay un ganador de Condorcet).

Gana C: Cuando se enfrenta a A, C tiene 77 votos (y A el resto hasta 100). Frente a B, D, y E, la propuesta C tiene 51, 66 y 60, respectivamente.

Voto único transferible (segunda vuelta instantánea): Se vota una primera ronda, la propuesta con menos votos se elimina. Se vota una segunda vuelta entre las restantes, de nuevo se elimina la menos votada. Así hasta que solo queda una.

Gana D: En al primera ronda se elimina C. En la segunda ronda, de los 11 que votaron C, 3 votarán D y 8 votarán E (de ahí lo de transferible) y se eliminará B. En tercera ronda los 16 votos de B pasan a D y la cosa queda: A con 33, D con 37 y E con 30, con lo que se elimina E. Entre A y D gana D con 77 votos.

Doble vuelta: Los dos con más votos en una primera vuelta se enfrentan en segunda vuelta. Quien más votos tenga en la segunda vuelta, gana.

Gana E: En primera vuelta A y E quedan primero y segundo, respectivamente. En la segunda vuelta A obtiene 36 votos frente a los 64 de E.

Pues eso. ¿Qué quiere el pueblo?

Comentarios